河北思凯淋急冷喷枪厂家小编为大家整理的关于电厂超低排放改造后脱硫吸收塔浆液中毒原因分析及对策案例,希望能帮到您
某电厂采用石灰石-石膏就地强制氧化脱硫工艺系统。脱硫剂为石灰石(CaCO3)与水通过球湿式球磨机磨制的石灰石浆液。在吸收塔内烟气中的SO2与石灰石浆液反应后生成亚硫酸钙,并就地强制氧化为石膏,石膏经二级脱水处理后外运。石灰石浆液制备系统和二级石膏脱水系统公用。
为满足环保要求进行1号机组超低排放改造,超低排放改造项目主要对脱硫系统、除尘系统、脱硝系统进行各方面改造,同时对配套系统进行优化、升级。脱硫系统优化改造内容主要是吸收塔增容,增加一台浆液循环泵为4台浆液循环泵,增加一层喷淋层为四层标准喷淋层,更换原两级板式除雾器为两级高效屋脊式除雾器等。为实现烟气颗粒污染物超净排放,在脱硫系统后增设湿式电除尘器。脱硝提效改造通过增加备用层催化剂,改造后运行3层催化剂。经过改造1号机组实现超低排放标准,机组运行中,烟尘、二氧化硫、氮氧化物排放浓度均低于10mg/Nm3、35mg/Nm3、50mg/Nm3,但为了节约成本吸收塔改造冗余有限,所有参数须在设计值范围内才能满足超低排放要求。2.2.6塔内氧化风量对吸收塔浆液反应有较大影响,氧化风量不足造成浆液内亚硫酸大量存在(见表1-1),使浆液形成碱性环境,控制碳酸钙的溶解,增加浆液密度,降低吸收率,也是浆液品质恶化的重要原因。
2.2.7双机高负荷运行,吸收塔补水量较大,存在补水不及时现象,1号吸收塔液位长期处于较低液位5.2米运行(正常5.5~6.0m之间),低液位减少吸收塔氧化区的空间,使得亚硫酸盐得不到充分氧化,从而影响吸收塔连锁反应,严重影响脱硫效率。
三、浆液中毒后采取的应对措施
3.1 停止使用高含盐回用水,采用工业水对工艺水箱补水,从而向1号吸收塔内补水改善补水水质,减少进入吸收塔内重金属离子。
3.2 利用机组停运机会及时处理故障的B23电场,优化电除尘运行方式,调整后吸收塔入口原烟气粉尘浓增小于50 mg/Nm3,减少进入吸收塔内杂质。
3.3加强运行调整,维持供浆密度控制在 1120~1160kg/m3之间,严格禁止过量供浆,及时调整吸收塔浆液PH值,确保PH值在5.2~5.8正常范围之间。
3.4加强对入厂石灰石质量验收,除碳酸钙含量大于90%、氧化镁含量小于3%外,严禁车辆掺杂泥土等杂质。
3.5进一步加强入炉煤含硫量控制,确保入口二氧化硫含量在满负荷小于1300 mg/Nm3,缓解吸收塔脱硫。
3.6将中毒浆液先置换掉,排进事故浆液箱及事故浆液池内,重新补充新鲜浆液。
3.7摸索氧化风机运行方式,启动2台氧化风机并列运行增加氧化风量,提高吸收塔浆液亚硫酸根离子的充分氧化反应。
3.8吸收塔出现冒泡现象后及时取吸收塔内浆液、工艺水、石灰石浆液样品进行化验,同时加入适量的消泡剂,采取相应对策。
四、取得成果
通过一系列调整1号机组脱硫吸收塔浆液反应良好,在机组660MW满负荷的情况下,入口二氧化硫浓度在1500 mg/Nm³(设计值)左右,出口二氧化硫能够按照超低排放标准要求长期达标排放运行;如2019年3月7日20:36分机组负荷660MW,入口二氧化硫1500 mg/Nm³,出口二氧化硫22.45mg/Nm³,满足超低排放小于等于35 mg/Nm³限值。